IC 915 LX
 NTC-PTC/ P R V-I I-V/ Pt100 Tc
 electronic controller with 2 intervention points

BUTTONS AND LEDS

UP
Scrolls through the menu items Increases the values Parameter programmable (see par. H31)

DOWN
Scrolls through the menu items Decreases the values Parameter programmable (see H32 parameter)
fnc
ESC function (quit) Parameter programmable (see par. H33)
out 1 Relay OUT 1
ON for relay on (energized);blinking for delay, protection or enabling blocked.

Set Ac Accesses the set point Accesses the Menus Activates functions Confirms the commands Displays the alarms (if active)

MACHINE STATUS MENU

a) Press the 'set' button and release it to access the machine status menu. In normal conditions, the labels for the two Set point values are found in the menu. Once the 'SP1' label has been displayed, press the "set" button to display the Setpoint 1 value. The Setpoint 1 value appears on the display. To change the Set point

value, use the "UP" and "DOWN" buttons within 15 seconds. If you press the "set" button again, when the fnc button is pressed or 15 seconds elapse, the last value displayed will be stored and the "SP1" label will reappear on the display. To set the Setpoint 2 value, follow the same procedure for setting Setpoint 1.
b) If alarms are present, the "AL" label appears. By using the "UP" and

"DOWN" buttons, you can scroll through all the folders in the menu: -AL: alarm folder (if alarms present, except for faulty probes/probe errors;
-SP1: Set point 1 setting folder.
-SP2: Set point 2 setting folder.
c) If an alarm condition exists when the Machine Status menu is accessed, the "ALfolder label appears.

(example: when maximum and minimum temperature alarms are present)
Use the UP and DOWN buttons to scroll through the list of active alarms and press 'set' to display the selected alarm.

PROGRAMMING MENU

The menu is divided into 2 levels once users have pressed the 'set' button for 5 seconds, they can access the user level folders (1) Navigation at user level(1):

- By using the 'UP' / 'DOWN' buttons you can scroll through all the folders in the programming menu that only contain user level parameters (1)

How to access the installer level (2):

- By using the 'UP' / 'DOWN' buttons, scroll through the user level folders (1) until the folder with the "CnF" label is displayed. Then press 'set' to access the parameters contained in it.
- By using the 'UP' / 'DOWN' all the parameters in the user level (1) in 'CnF' are displayed, continue until the 'PA2' label is not longer displayed and press 'set'.

- By pressing the 'set' button next to 'PA2' the first folder containing installer level parameters will be displayed and then the 'rE1' folder.

Navigation at installer level(2):

- By using the 'UP' / 'DOWN' buttons you can scroll through all the folders in the programming menu that only contain installer level parameters (2)

How to modify the parameter value (on both levels):

- When the 'set' button is pressed, the first folder in the menu is displayed. (e.g.: "rE1" folder)
- By using the 'UP' / 'DOWN' buttons you can scroll through all the folders in current level.
- By pressing the 'set’ button next to the selected folder (in this case "AL") the first parameter in the current level will be displayed. Select the desired parameter using the 'UP' / 'DOWN' keys.
- By pressing the 'set' button the value
set
 of the selected parameter is displayed and by using the 'UP' and 'DOWN' buttons, it can be modified.

PASSWORD

Access to parameter handling both at user level and installer level can be limited by using passwords. The passwords can be enabled by setting the PA1 (user password) and PA2 (installer password) in the 'dIS' folder. The passwords are enabled if the value of the 2 parameters PA1 and PA2 is not 0 .

- To access the "Programming" menu hold down the "set" button for more than 5 seconds.
If specified, the user level(1) access PASSWORD will be requested

- If password 1 is enabled (not 0) you will be asked to enter it. Perform the operation by selected the correct value using the 'UP' e 'DOWN' keys and press the 'set' button to confirm.

Installer level (2) parameters

In the programming menu scroll through the folders containing the user level parameters using the UP' and 'DOWN' buttons until the CnF folder is displayed.

- Press the 'set' button to enter the 'CnF' folder where the'PA2' label is present.
- Scroll through the folder parameters and press the 'set' button next to the 'PA2' label, ' 0 ' will appear on the display.

- Use the 'UP’ / 'DOWN' buttons to select the correct value of the installer password and then press the 'set' button to access the installer level parameters (2).

If the password is not entered correctly, the device will display the 'PA2' label again and the operation will have to be repeated.

At each level in both menus, when the "fnc" button is pressed or the 15 second time out elapses, you are taken back to the higher display level and the last value on the display is stored.

COPY CARD

The Copy Card is an accessory connected to the TTL serial port used for quick programming of the unit parameters (upload and download parameter map to one or more units of the same type). upload (UL label), download (dL label) and copy card formatting (Fr label) operations are performed in the following way:

Download from reset

Connect the copy card when the instrument is OFF. The programming parameters are downloaded when the device is switched on. At the end of the lamp test, the following messages are displayed for about 5 seconds:

- dLY label if copy operation is successful
- DLn label if operation fails

Uploading and Downloading parameters from instrument
NOTE:

- after the parameters have been downloaded, the device uses the downloaded parameter map settings.
- see "FPr folder" in Parameter Table and Description of parameters

FUNCTIONS

The following functions are available in the FnC folder (last folder visible from the Programming Menu, level 1):

Function	Function label ACTIVE	Function label NOT ACTIVE	D.I.	Button	Active function signalling
soft start	SOn	SOF*	1	1	LED blinking
economy set point	OSP	SP*	2	2	LED ON
shut-down?	bOn*	COF	3	3	LED ON
periodic cycle	COn	AOF	4	4	LED ON
aux	AOn	OF	5	5	LED ON
stand-by.	On*	AtF*	6	6	OED ON
maintenance request	Atn		7	7	UnP blinking

* indicates default

Atn
AtF* UnP blinking

* indicates default

NOTE: to modify the status of a specified function press the 'set' button
NOTE:If the unit is switched off, the function labels go back to their default status.

ALARMS

IC 915 LX MODELS

LABEL	ALARM	CAUSE	EFFECTS*	Resolving problems	NTC/PTC	V-I	Pt100-TC
E1	Probe 1(control) faulty	- measuring of values outside the nominal reading range - control probe faulty/shorted/open probe	"E1" label appears on display; Controller enabled as indicated by the On1 and OF1 parameters if programmed for the Duty Cycle	- check the probe wiring - replace the probe		-	-
$\begin{aligned} & \mathrm{AH} 1 / \\ & \mathrm{AH} 2 \end{aligned}$	High temperature alarm	- value read by probe $1>\mathrm{HA} 1 / 2$ after time equal to "tAO". (see "MIN MAX ALARMS" and description of "HA1/2", "Att" and "tAO" parameters)	Alarms created in the "AL" folder with the AH1/AH2 label	- Wait for temperature value read by probe 1 to fall below HA1/2			0
$\begin{aligned} & \hline \text { AL1/ } \\ & \text { AL2 } \end{aligned}$	Low temperature alarm	- value read by probe 1 < LA1/2 after time equal to "tAO". (see "MIN MAX ALARMS" and description of "LA1/2", "Att" and "tAO" parameters)	Alarms created in the "AL" folder with the AL1/AL2 label	- Wait for temperature value read by probe 1 to go above LA1/2			
EA	External alarm	- control of alarm from active D.I. if "H11" = 8 or 9 (see description of "H11" parameter)	Alarms signalled in the "AL" folder with the EA label It only blocks the controllers if "H11"=9	- Manual silencing by pressing button			

* Effects common to all alarms:

MAX-MIN ALARMS

Minimum temperature alarm
Maximum temperature alarm
Minimum temperature alarm
back swing
Maximum temperature alarm back swing

Alarm LED permanently on; Buzzer activated (if present); Relay enabled (if configured as alarm "H21"=3) Temperature expressed as an absolute value (par "Att"=0) Abs(olute)

${ }_{\text {LAI HAR }}^{4}$
Temperature lower than or equal to LA1/2 (LA1/2 with sign)
Temperature greater than or equal to HA1/2 (HA1/2 with sign) Temperature higher than or equal to LA1/2+AFd

Temperature lower than or equal to HA1/2-AFd

)
d
\qquad

Tem

	PAR.	RANGE	DEFAULT	LEVEL	U.M.
	SP1	LS1...HS1	0.0		${ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}$
	SP2	LS2...HS2	0.0		${ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}$
	HC1	H/C	H/C*	1	Flag
	OS1	-30.0...30.0	0	2	${ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}$
	db1	0... 30.0	1*	1	${ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}$
	dF1	0... 30.0	0*	1	${ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}$
	HS1	LS1...HdL	*	1	${ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}$
	LS1	LdL.... HS 1	*	1	${ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}$
	HA1	LA1...150.0	*	1	${ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}$
	LA1	-150.0...HA1	*	1	${ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}$
	dn1	0... 250	1	1	${ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}$
	d01	0... 250	0	1	sec
	di1	0... 250	0	1	min
	dE1	0...250	0	1	min
	On1	0... 250	0	1	sec
	OF1	0... 250	1	1	min
	HC2	H/C	H/C*	1	Flag
	OS2	-30.0...30.0	0	2	${ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}$
	db2	0... 30.0	1*	1	${ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}$
	dF2	0... 30.0	0*	1	${ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}$
	HS2	LS1...HdL	*	1	${ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}$
	LS2	LdL.... HS 1	*	1	${ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}$
	HA2	LA1...150	*	1	${ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}$
	LA2	-150...HA1	*	1	${ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}$
	dn2	0... 250	1	1	${ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}$
	dO2	0... 250	0	1	sec
	di2	0...250	0	1	min
	dE2	0... 250	0	1	min
	On2	0... 250	0	1	sec
	OF2	0...250	1	1	min
	dSi	0... 25.0	0	2	${ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}$
	dSt	0... 250	0	2	$\mathrm{hh} / \mathrm{mm} / \mathrm{sec}$
	Unt	0/1/2	0	2	$\mathrm{hh} / \mathrm{mm} / \mathrm{sec}$
	SEn	0/1/2/3	0	2	num
	Sdi	0... 30.0	0	2	${ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}$
$\stackrel{\rightharpoonup}{v}$ $\stackrel{0}{0}$ 	Con	0... 250	0	2	min
	Cof	0... 250	0	2	min
	Att	AbS/rEL	AbS	2	flag
	Afd	1.0...50.0	2.0	2	${ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}$
	PAO (1) (!)	0...10	0	1	${ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}$
	SAO	0... 10	0	1	hours
	tAO (1)	0... 250	0	2	min
	AOP	$\mathrm{nc} / \mathrm{no}$	$\mathrm{nc} / \mathrm{no}$	2	flag
	dEA (!)	0... 14	0	1	num
	FAA (!)	0... 14	0	1	num
Display-diS label	LOC	n/y	n	1	flag
	PA1	0... 250	0	1	num
	PA2 **	0... 250	0	2	num
	ndt	n/y	n	1	flag
	CA1	-30.0...30.0	0	1	${ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}$

PAR.

CAI		0/1/2	2	2	num
LdL	IC 915 LX NTC/PTC	-67.0...HdL	-50	2	${ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}$
	IC 915 LX V-I	-99...HdL	*		
	IC 915 LX Pt100-Tc	-328... HdL	*		
HdL	IC 915 LX NTC/PTC	LdL... 302	140	2	${ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}$
	IC 915 LX V-I	LdL... 100	*		
	IC 915 LX Pt100	LdL.... 1999	*		
dro	IC 915 LX NTC/PTC IC 915 LX Pt100	${ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}$	${ }^{\circ} \mathrm{C}$	1	flag

H04	IC 915 LX V-I	(ndt=int) $-990 . . .1000$ (ndt=int) $-99.0 . . .100 .0$	$*$	1	${ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}$
H05	$-2 /-1 / 0 /+1 /-2$	0	2		

H06		n / y	y	2	flag
H08		0/1/2	2	2	num
H10		0... 250	0	1	min
H11	IC 915 LX NTC/PTC IC 915 LX Pt100-Tc	0...9	0	2	num
$\mathrm{H} 13$	IC 915 LX NTC/PTC IC 915 LX Pt100-Tc	no/nc/noP/nCP	no	2	num
$\mathrm{H} 14$	IC 915 LX NTC/PTC IC 915 LX Pt100-Tc	0..0.250	0	2	num
H21		0...6	1	2	num
H22		0...6	1	2	num
H31		0...7	0	2	num
H32 (!)		0...7	0	2	num
H33 (!)		0...7	0	2	num
reL		1	/	1	1
tAb		/	/	1	/

PA2 label

In the CnF folder you can access all level 2 parameters with the PA2 label by pressing the "set" button

$\bar{\sim}$	UL	/	/	1	/
告	dL	/	/	1	/
-	Fr (3)	/	/	2	/

FUNCTIONS (folder with "FnC" label)
The FnC folder (last folder visible from the Programming Menu) contains several functions that are activated using the "set" button.

NOTES:

(1) Refers exclusively to high and low temperature alarms.
(2) The Pt100 model only works for the Pt100 input (3 wires) whereas $\mathrm{Tcj} / \mathrm{TcK}$ models, on the basis of this parameter, can work with the Tc input and the Pt100 input.
(3) If the Fr command is used, the data entered in the card will be permanently lost. This operation cannot be undone. After the operation with the Copy Card, the controller must be switched off and then switched back on

WARNING (!)

If one or more parameters marked with (!) are modified, the controller must be switched off after the modification and then switched back on

PLEASE NOTE:

The parameters dro, $\mathrm{H} 11, \mathrm{H} 13$ and H 14 are only present in models IC 915 LX NTC/PTC and Pt100/TcJ-TcK.
Parameters H03 and H04 are only present in the IC 915 LX V-I model

* The default value depends on the model
** Visible at level 1 in the CnF folder and can be set at level 2 in the dis folder

CONTROLLER 1/CONTROLLER 2 (folders with "rE1"/"rE2" label)

HC1/HC2 If set to H , the controller operates in heating mode. If set to C , the controller operates in cooling mode.
OS1/OS2 Offset Setpoint 1/Offset Setpoint 2
db1/db2 Operating band 1, 2 See ON-OFF control diagram
$\mathbf{d F 1 / d F 2}$ Relay 1 intervention differential. The load will stop when Set point 1 is reached (as indicated by the control probe) and will restart at a temperature equal to setpoint 1 (2) plus (or minus, depending on $\mathrm{HC1} / \mathrm{HC} 2$) the value of the differential. See ON-OFF adjustment diagram
HS1/HS2 Maximum value for set point $1 / 2$.
LS1/LS2 Minimum value for set point $1 / 2$.
HA1/HA2 Maximum alarm OUT 1/OUT 2 See Max/Min. Alarm diagram
LA1/LA2 Minimum alarm OUT 1/OUT 2See Max/Min. Alarm diagram.

PROTECTIONS CONTROLLER 1/PROTECTIONS CONTROLLER 2

 (folders with "rE1"/"rE2" label)dn1/dn2 Start-up delay. The specified time must elapse between the controller relay start-up request and actual start-up.
do1/do2 Delay after shut-down. The specified time must elapse between shutdown of the controller $1 / 2$ relay and a subsequent start-up
di1/di2 Delay between start-ups. The specified time must elapse between two subsequent start-ups of controller $1 / 2$.
dE1/dE2 Shut-down delay. The specified time must elapse between shut-down of the controller $1 / 2$ relay and a subsequent start-up NOTE: for parameters dn1, dn2, do1, do2, di1, di2, dE1 $0=$ not active
On1/On2 Controller start-up time if probe is faulty. If set to " 1 " with Oft at " 0 " the controller is always on whereas if Oft >0 it operates in duty cycle mode.
OF1/OF2 Controller shut-down time if probe is faulty. If set to " 1 " with Ont at " 0 " the controller is always on whereas if Ont>0 it operates in duty cycle mode.

SOFT START (folder with "SFt" label)

N.B.: The SOFT START function is button, D.I. or function selectable. The Soft Start controller can be used to set the temperature gradient required to reach a specific set point in a specific period of time. This function automatically gives you a progressive increase of the control set point from the Ta value (ambient temperature at start-up) to the value actually displayed. This means that a rise in temperature can be immediately stopped and the risk of overshooting reduced.
dSi Value (in degrees) of each of subsequent increases (dynamic) of adjustment point.? $0=$ disables the SOFT START function.
dSt Time between two subsequent increases (dynamic) of set point
Unt Unit of measurement (hours, minutes, seconds)
SEn Enabled outputs. Establishes which outputs the function must be enabled on: $0=$ disabled; 1 = OUT $1 ; 2$ = OUT $2 ; 3$ = OUT $1 \& 2$;
Sdi Function reinsertion threshold. Establishes the threshold beyond which the SOFT START function is automatically re-inserted

PERIODIC CYCLE (folder with "cLc" label)

N.B.: The PERIODIC CYCLE function is button, D.I. or function selectable. This function can be associated with relay outputs (by setting parameters H21, H22 =4) and can be used for "Duty Cycle" adjustment with the ranges defined by the parameters Con and CoF

Con Output ON time.
Cof Output OFF time.

ALARMS (folder with "AL" label)

Parameter "HA1/2" and "LA1/2" modes, as absolute temperature values or as differential compared with? the Set point.
0 = absolute value; 1 = relative value.
AFd Alarm differential.
PAO Alarm exclusion time on device start-up after a power failure.
SAO Alarm exclusion time after reaching the Set point. $0=$ disabled. If >0, an alarm will be generated if the Set point is not reached after the time (in hours) set by this parameter.
tAO Temperature alarm signal delay time.
AOP Polarity of alarm output.
$0=$ alarm active and output disabled;
1 = alarm active and output enabled.

COMMUNICATION (folder with "Add" label)

dEA Device address: indicates the device address to the management protocol.
FAA Family address: indicates the device family to the management protocol.

DISPLAY (folder with "diS" label)

Keyboard Lock

Keyboard operating can be locked by programming the "Loc" parameter (see folder with "diS" table). If the keyboard is locked you can access the Programming Menu by pressing the "set" button. The Set point can also be displayed.

LOC Keyboard locked (set point and buttons). However, you can still access the parameter programming menu and modify the parameters including the status of this parameter to allow keyboard unlocking. $\mathrm{y}=\mathrm{yes} ; \mathrm{n}=\mathrm{no}$.

Password 1. When enabled (value is not 0) it represents the access key to level 1 parameters.
PA2 Password 2. When enabled (value is not 0) it represents the access key to level 2 parameters.
ndt number display type. Display with decimal point. $\mathrm{y}=\mathrm{Yes} ; \mathrm{n}=\mathrm{no}$.
CA1 Calibration 1. Positive or negative temperature value that is added to the value read by control probe (probe 1) before being displayed or used for control.
CAI Offset intervenes on display, thermostat control or both.
$0=$ only modifies the temperature displayed
$1=$ adds to the temperature used by controllers not the temperature displayed that remains unchanged;
2 = adds to temperature displayed that is also used by the controllers

Minimum value the instrument is able to display.
Maximum value the instrument is able to display.
Select ${ }^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$ to display temperature read by probe.
N. B.: switching from ${ }^{\circ} \mathrm{C}$ to ${ }^{\circ} \mathrm{F}$ or vice versa DOES NOT modify set points, differentials, etc. (e.g. set point $=10^{\circ} \mathrm{C}$ becomes $10^{\circ} \mathrm{F}$)

CONFIGURATION (folder with "CnF" label)

Selection of probe type.
Output link. $0=$ independent; $1=$ dependent; $2=$ Neutral Area (or window)
Button activation time if buttons are configured for a second function. For the ESC, Up and DOWN buttons configured for a second function (defrost, aux, etc) the time for quick enabling is set. Fa Aux is an exception and has a set time of 1 second
Minimum value of current input
Maximum value of current input
Window filter. $-2=$ very fast; $-1=$ fast; $0=$ normal; $1=$ slow; $2=$ very slow button/aux input/door switch light active when instrument is off (but powered)
Stand-by operating mode. $0=$ only display is switched off; $1=$ display on Output delay from power-on Attention! If $=0$ is not active; if $\neq 0$ the output will not be activated before this time has expired
Configuration of digital inputs
0 = disabled; $\quad 1=$ SOFT START; $2=$ Set point Offset;
3 = outputs shut down; 4 = periodic cycle; 5 = auxiliary output;
$6=$ stand-by $\quad 7=$ maintenance request
8 = external alarm $\quad 9=$ external alarm disables controllers.
Polarity and priority Digital Input
no= normally open/ nc= normally closed /
noP= normally open with polarity / ncP= normally closed with polarity
see "H13 parameter configuration" table
1 Digital input enabling delay
$0=$ disabled; $\quad 1=0$ on-off $\quad 2=$ not used;
3 = alarm; $\quad 4=$ periodic cycle $\quad 5=$ aux
6 = stand-by
Digital output 2 configurability. (OUT2) Same as H21.
UP button configurability.
$0=$ disabled; $\quad 1=$ SOFT START;
2 = Set point Offset; 3 = outputs shut down;
4 = periodic cycle; $\quad 5=$ auxiliary output (aux);
$6=$ stand-by; $\quad 7=$ maintenance request
DOWN button configurability. Same as H31.
fnc button configurability. Same as H31.
Device version. Read only parameter.
Reserved. Read only parameter.
COPY CARD (folder with "Fpr" label)
UpLoad: transfer of programming parameters from instrument to Copy Card.

Format. Cancelling all data entered in the copy card.
N.B.: if the "Fr" parameter is used (copy card formatting) the data entered in the card will be permanently lost. This operation cannot be undone. After the operation with the Copy Card the controller must be switched off and then on again

NOTE: examples with $\mathrm{HC1}=\mathrm{H}$ and $\mathrm{HC2}=\mathrm{C}$
independent ON-OFF control diagram. The two outputs regulate as though they are completely independent

1
dependent ON-OFF control diagram. The set point 2 SP2 regulates according to SP1

2
ON-OFF control diagram Neutral Area (or window). NOTE: if dF1 and dF2 are both $=0$ the outputs are deactivated when SP1 is reached

H13 PARAMETER CONFIGURATION

H13	D.I. STATE	WITH BUTTON OR MENU		FUNCTION STATE	COMMENTS
		ENABLED	DISABLED		
NO	open	YES	YES	ON	enabled/disabled with each mode
NO	closed	YES	YES	OFF	enabled/disabled with each mode
NC	open	YES	YES	OFF	enabled/disabled with each mode
NC	closed	YES	YES	ON	enabled/disabled with each mode
NOP	open	YES	YES	ON	enabled only from D.I. / disabled with each mode
NOP	closed	NO	N/A	OFF	enabled only when D.I. / is reopened
NCP	open	YES	YES	OFF	enabled with each mode / disabled only from D.I.
NCP	closed	N/A	NO	ON	enabled with each mode / disabled only from D.I.

EWPA-EWHS PROBES CONFIGURATION

EWHS 300/310 3 fili

TECHNICAL DATA
1 Pt100 or 1 TcJ or TcK (depending on model)
TTL for connection to Copy Card or TelevisSystem

$$
\begin{aligned}
& 1 \text { SPST relay } 8(3) \mathrm{A} 1 / 2 \mathrm{hp} 250 \mathrm{~V} \text { - } \\
& 1 \text { on SPST relay } 8(3) \mathrm{A} 1 / 2 \mathrm{hp} 250 \mathrm{~V} \text { - }
\end{aligned}
$$

only in specific models from
see "Pt100/TcJ/TcK models" table
$\mathrm{A} \max (\bmod .12 \mathrm{~V}) / 3 \mathrm{VA} \max (\bmod .230 \mathrm{~V})$
$12 \mathrm{~V} \sim / \ldots, 12 / 24 \mathrm{~V} \sim /=, 24 \mathrm{~V} \sim /=10 \%$,
$110 / 115 \mathrm{~V} \sim, 220 / 230 \mathrm{~V} \sim 10 \% 50 / 60$

N.O. controller relay OUT1
N.O. controller relay OUT2

Probe input Pt100 3 wires Pb1

てI-ル
ํำ

* depending on model

Pt100:

Accuracy:

$0,5 \%$ for full scale value +1 digit;
0.2% from -150 to $300^{\circ} \mathrm{C}$

Resolution:

$0.1^{\circ} \mathrm{C}\left(0.1^{\circ} \mathrm{F}\right)$ up to $199.9^{\circ} \mathrm{C}$; $1^{\circ} \mathrm{F}$ over Tc]:

Accuracy:

0.4% for full scale value +1 digit;
Resolution:
$1^{\circ} \mathrm{C}\left(1^{\circ} \mathrm{F}\right)$

TCK:

Accuracy:

$0,5 \%$ for full scale value + 1 digit; 0.3% from -40 to $800^{\circ} \mathrm{C}$
Resolution:
$1^{\circ} \mathrm{C}\left(1^{\circ} \mathrm{F}\right)$

RESPONSIBILITY AND
 RESIDUAL RISKS

Eliwell shall not be liable for any damages deriving from:

- installation/use other than that prescribed and, in particular, which does not comply with the safety stan dards specified in the regulations and/or those given herein;
- use on boards which do not guarantee proper protection against electric shock, water or dust when assembled;
- use on boards which allow dangerous parts to be accessed without the use of tools;
- tampering with and/or alteration of the product; - installation/use on boards that do not comply with the standards and regulations in force.

DISCLAIMER

This document is exclusive property of Eliwell and cannot be reproduced and circulated unless expressly authorized by Eliwell. Although Eliwell has taken all possible measures to guarantee the accuracy of this document, it declines any responsibility for any damage arising out of its use. The same applies to any person or company involved in preparing and writing this document. Eliwell reserves the right to make any changes or improvements without prior notice and at any time.

Eliwell \& Controlli s.r.l.
Via dell'Industria, 15 Zona Industriale Paludi
32010 Pieve d'Alpago (BL) ITALY
Telephone +39 0437986111
Facsimile +39 0437989066
Internet http://www.eliwell.it
Technical Customer Support:
Telephone +39 0437986300
Email: techsuppeliwell@invensys.com
Invensys Controls Europe An Invensys Company
cod. 9IS44009

MECHANICAL ASSEMBLY

The unit has been designed for panel-mounting: Drill a $29 \times 71 \mathrm{~mm}$ hole, insert a tool and fix it in place with the brackets provided. Do not assemble the instrument in excessively humid or dirty locations since it is designed to be used in locations with normal pollution levels. Always make sure that the area next to the cooling openings of the tool is adequately ventilated.

ELECTRICAL CONNECTIONS

Warning! Always switch off machine before working on electrical connections. The instrument has screw terminals for connecting electrical cables with a maximum diameter of $2.5 \mathrm{~mm}^{2}$ (only one conductor per terminal for power connections): for terminal capacity, see instrument label.The relay contacts are voltage-free. Do not exceed the maximum current allowed. For higher loads, use a suitable contactor. Make sure that the power voltage complies with the device voltage. The sensor has no connection polarity and can be extended using an ordinary bipolar cable (note that extending the probe may affect the electromagnetic compatibility (EMC) of the instrument: special care must be used when wiring). Probe cables, power supply cables and the TTL serial cable should be kept separate from power cables.

TELEVIS SYSTEM

The Televis remote control systems can be connected using the TTL serial port (the 130 or 150485 BUS ADAPTER TTL-RS interface module must be used). To configure the instrument to do this, you need to access the "Add" folder and use the "dEA" and "FAA" parameters.

The technical characteristics in this document concerning measurements (range, accuracy, resolution, etc.) refer to the instrument in the strictest sense and not to any accessories provided such as probes, for example. This means, for example, that an error introduced by the probe is added to any error that is typical of the instrument.

CONDITIONS OF USE

PERMITTED USE

For safety reasons the instrument must be installed and used in accordance with the instructions supplied. Users must not be able to access parts with dangerous voltage levels under normal operating conditions. The device must be suitably protected from water and dust according to the specific application and only be accessible using special tools (except for the front keypad). The device can be fitted to equipment for household use and/or similar use in the refrigeration sector and has been tested with regard to safety in accordance with the European harmonized reference standards: It is classified as follows:

- as an automatic electronic control device to be integrated as regards its construction;
- as a 1 B type operated control device as regards its automatic operating features;
- as a Class A device in relation to the category and structure of the software.

UNPERMITTED USE

The use of the unit for applications other than those described above is forbidden. It should be noted that the relay contacts supplied with the device are functional and therefore exposed to potential faults. Any protection devices required to comply with product requirements or dictated by common sense due to obvious safety reasons should be installed externally.

